AtomAI
stable

Notes

  • ReadMe
  • LICENSE
  • Scientific output

Package Content

  • AtomAI Models
  • Trainers and Predictors
  • Neural Nets
  • Loss Functions and Metrics
  • Other utilities

Examples

  • Colab notebooks
AtomAI
  • »
  • Welcome to AtomAI’s documentation!
  • Edit on GitHub

Welcome to AtomAI’s documentation!

Notes

  • ReadMe
    • What is AtomAI
      • Why AtomAI
    • How to use it
      • Semantic segmentation
      • ImSpec models
      • Deep ensembles
      • Variational autoencoders (VAE)
      • Custom models
      • Not just deep learning
    • Installation
  • LICENSE
  • Scientific output

Package Content

  • AtomAI Models
    • Segmentor
    • ImSpec
    • Variational Autoencoder (VAE)
    • Rotational Variational Autoencoder (rVAE)
    • Joint Variational Autoencoder (jVAE)
    • Joint Rotational Variational Autoencoder (jrVAE)
    • Deep Kernel Learning
    • Load trained models
  • Trainers and Predictors
    • Single Model Trainers
      • Base Trainer Class
      • Trainer for Semantic Segmentation
      • ImSpec Trainer
      • Variational Inference Trainer
    • Deep Ensemble Trainers
      • Ensemble Trainer
    • Single Model Predictors
      • BasePredictor
      • SegPredictor
      • ImSpecPredictor
    • Deep Ensemble Predictors
      • Ensemble Predictor
  • Neural Nets
    • Fully convolutional neural networks
    • Neural Networks for VAE
    • Neural Networks for ImSpec
    • Building blocks
  • Loss Functions and Metrics
    • Losses for imbalanced classes
    • Metics for imbalanced classes
  • Other utilities
    • Statistics
    • Image transforms
    • Training data preparation
    • Image pre/post processing
    • Atomic Coordinates
    • Visualization
    • ASE utilities
    • Datasets

Examples

  • Colab notebooks
Next

© Copyright 2021, Maxim Ziatdinov. Revision 1671716c.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
Versions
latest
stable
Downloads
On Read the Docs
Project Home
Builds